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Abstract. It’s well known that the rank of its internal linear transformations alone is not sufficient to
determine the isomorphism type of a multiparameter persistence module. In this paper, we use the rank
of matrices to define rank characters for the generalized persistence modules of an arbitrary finite poset.
Using rank characters, we assign to a persistence module its virtual barcode, a vector over Q, indexed by
the collection of convex (interval) modules. This invariant, which can be computed explicitly, conveys
information about the summands of a persistence module M . For example, when a module’s virtual barcode
has a coordinate that is not in Z≥0, the module cannot decompose into a direct sum of convex modules.
On the other hand, if M is a direct sum of convex modules, its virtual barcode corresponds exactly to its
Krull-Schmidt decomposition. In this case, the barcode of M can be obtained from its rank character by
matrix multiplication.

1. Introduction

A subset S of a poset P is convex1, if it’s edge connected and if [a, b] ⊆ S whenever a, b ∈ S. It’s well
known that the convex subsets of P parametrize the convex modules for P . That is, the isomophism classes
of those generalized persistence modules which are indecomposable and determined completely by their
support are supported on convex subsets of P . While rank can be used as an invariant for one-dimensional
persistence modules in the sense that rank determines the isomorphism type (see [CSEH07], [CdGO12]),
when a poset isn’t totally ordered the ranks of the matrices corresponding to the intervals in the poset
aren’t sufficient to distinguish even between direct sums of convex modules; see Example 1.1 below. In
a sense, the problem is precisely that there are convex modules with supports that do not correspond to
intervals in the poset at all. This issue is significant, since the only connected posets with the property
that all convex modules are intervals are totally ordered. Thus, with an eye on multiparameter persistence,
a better way of using rank is required.

Example 1.1. We consider the poset P with its representations M and N (see Figure 1). Note that both
M and N agree on every interval in P with respect to rank. That is,

Rank(M(x)) = Rank(N(x)) =


2, x = [1, 1]

1, x = [2, 2], [3, 3], [1, 3], [2, 3]

0, x = [1, 4], [2, 4], [3, 4], [4, 4].

Note that both M and N are indeed direct sums of convex modules, yet the rank of the matrices for
all their intervals alone does not distinguish them. In Example 4.1, we use rank characters and virtual
barcodes to separate M and N . �

Recent work has suggested criteria for determining when a multiparameter persistence module is a
direct sum of certain types of convex modules (see [CO16], [BLO20]). Others have explored ways to
extract information from the rank of persistence modules (see [BOO21], [Lan14]). In this paper, we define
an invariant on a persistence modules for an arbitrary finite poset using the rank of its internal morphisms.
These rank characters assign to a persistence module a virtual barcode, which will agree with its actual
barcode in the event that the module is a direct sum of convex modules. In addition, virtual barcodes
provide a one-sided test for determining when a persistence module has only convex summands, in the
sense that many virtual barcodes indicate that their corresponding module cannot be decomposed into a
direct sum of only convex modules.

1In the literature, the corresponding modules are commonly called interval modules. We choose a different terminology to
distinguish between actual intervals in the poset P and the supports of more general convex modules
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Figure 1. The diamond , along with two representations that agree on every interval with
respect to rank.

We’ll now provide a brief background for rank characters; see Section 2 for complete definitions. If P
is a poset, let Π := {S ⊆ P | S is convex}. Each S ∈ Π gives rise not only to a convex module MS , but
also an element AS of the poset (incidence) algebra. We use the fact that a persistence module M can be
applied to each AS to obtain a linear operator on the vector space

⊕
p∈P

M(p).

The rank character of M is defined to be the |Π| × 1 integer vector χ(M) := (Rank(M(AS)))S∈Π, and
the rank matrix for P is the Π×Π matrix R = (r(S′,S)) := (Rank(MS(AS′)))(S′,S). Our main results show

how the rank character of a persistence module can be used to recover its barcode.

Main Theorem (Theorem 3.6). Let P be a finite, connected poset and let Π be the set of convex subsets
of P .

(a) If M and N are direct sums of convex modules, then χ(M) = χ(N) ⇐⇒ M ∼= N .
(b) If M is a direct sum of convex modules, then R−1 · χ(M) returns the barcode of M

That is, rank characters are invariants for generalized persistence modules rich enough to distinguish
between direct sums of convex modules. In this sense, they are analogous to the (ordinary) characters
of a group. Moreover, the rank matrix is always invertible, and can be used to efficiently recover the
isomorphism type of a direct sum of convex modules by matrix multiplication. This also provides a one-
sided test which can sometimes be used to determine that a generalized persistence module isn’t a direct
sum of convex modules, since it follows easily from the Main Theorem that if R−1 · χ(M) is not a vector
over Z≥0, M is not a direct sum of convex modules. Thus, as an easy consequence of our main results we
get the following corollary.

Corollary 1.2. Let P be a finite, connected poset and M be an arbitrary generalized persistence module
for P . Let R be the rank matrix for the set of convex subsets Π of P and χ(M) be the rank character of
M . If R−1 · χ(M) has a negative entry, then M is not a direct sum of convex modules.

In Theorem 3.6, the vector R−1 · χ(M) = (qS)S∈Π, where each qS ∈ Q, is the virtual barcode of M .
With motivation both from virtual characters for groups and [BOO21], our main results can be restated
as follows.

Main Theorem (Theorem 3.8). (Virtual barcode characterization) Let P be a finite, connected poset and
let M and N be persistence modules for P .

(a) If M ∼= N , then the virtual barcodes of M and N are equal.
(b) If M is a direct sum of convex modules, then R−1 · χ(M) is a vector over Z≥0, and R−1 · χ(M) =

(qS)S∈Π is the barcode of M .

(c) If R−1 · χ(M) is not a vector over Z≥0, then M is not a direct sum of convex modules.

That is, virtual barcodes are invariants for persistence modules which agree with barcodes when restricted
to direct sums of convex modules. Moreover, they can also sometimes be used to detect if a module has
non-convex summands. We remark that if the poset P has the property that its rank matrix is in SL(|Π|,Z)
as opposed to GL(|Π|,Q) ∩M|Π|,|Π|(Z), the virtual barcode for every persistence module for this poset is
a vector over Z (as opposed to Q). In this situation, by interpreting the nonzero entries as multiplicities,
the virtual barcode gives us a virtual decomposition
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Figure 2. A schematic for rank characters and virtual barcodes.

M ∼
m⊕
i=1

Si −
n⊕
j=1

Tj

with χ(M) = χ(⊕Si) − χ(⊕Tj)). This decomposition is good up to isomorphism class, and agrees with
the Krull-Schmidt decomposition when M is a direct sum of convex modules (in which case n = 0). We
caution the reader, however, that, depending on the poset, many nonisomorphic persistence modules may
have the same virtual barcode, even in the event that the barcode is over Z≥0; see Example 4.3.

This paper is organized as follows. In Section 2, we cover some preliminaries and formally define rank
characters and the rank matrix. Section 3 contains our main results, while in Section 4 we provide examples
of some explicit computations and also point out some of the subtleties of rank characters. Finally, in
Section 5 we point out some questions raised by our work that we wish to consider in the future.

2. Convex modules and rank characters

In this section we’ll introduce the ideas that we will use throughout the remainder of the paper and
prove some technical results which we will need moving forward.

Definition 2.1. Let P be a poset. A nonempty subset S is called poset convex if for any a, b ∈ S, the
set [a, b] := {p ∈ P | a ≤ p ≤ b} is a subset of S. S is convex if it is poset convex and edge connected.

It’s well known that convex sets serve as the support for some special indecomposable persistence
modules. If S ⊆ P is convex, the module MS defined below is a well-defined indecomposable persistence
module for P .

MS(p) :=

{
k if p ∈ S
0 if p /∈ S and MS(a ≤ b) :=

{
1 if {a, b} ⊆ S
0 if {a, b} 6⊆ S.

If M is a persistence module for P isomorphic to some MS , we say M is convex. While in the literature,
these modules are commonly called interval modules, we choose different terminology to distinguish between
actual intervals in the poset P and the supports of more general convex modules (see, for example, Figure
3). An indecomposable persistence module with the property that each vector space is either zero or one-
dimensional must have support given by a convex set; such modules are commonly called thin. Convex
sets also give rise to elements of the poset algebra. Let S be convex and set AS =

∑
[ai, bi], where the sum

is over the intervals in P maximal with respect to being contained in S. That is,

AS :=
∑

[ai,bi]∈TS

[ai, bi], TS := {[a, b] | [a, b] ⊆ S and [a, b] ⊆ [c, d] ⊆ S ⇒ [a, b] = [c, d]}.

Note that since we may view the poset algebra as the path algebra for the Hasse quiver of P modulo
the parallel ideal, AS is a well-defined element of the poset algebra. Let Π := {S ⊆ P | S is convex}.
We already know that Π parameterizes the collection of convex modules, and since every convex subset S
is uniquely determined by its collection of maximal intervals, the assignment S 7→ AS is one-to-one. So
each element S of Π corresponds to both a convex module MS and a unique element of the poset algebra
AS . In this section we’ll be careful to distinguish between convex subsets and their corresponding convex
modules, but in what follows when there is no ambiguity we will no longer make this distinction.

Definition 2.2. Let P be a finite poset and V be an arbitrary persistence module for P .
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Figure 3. On the left, the red and blue sets are convex subsets for the pictured poset. On the
right, the pink, blue and green modules are all convex subsets of the commutative grid.

(i) The rank character of V , denoted χ(V ), is the |Π| × 1 column vector
(
Rank(V (AM ′))

)
, where

M ′ ∈ Π.
(ii) The rank matrix for P is the |Π| × |Π| matrix R = (r(S′,S)) = (Rank(MS(AS′)))(S′,S).

Thus, to compute the S′-entry of χ(V ), we apply V to AS′ and take the rank of the resulting matrix.
Clearly, χ(V ) has nonnegative integer coefficients. The rank matrix is the square matrix whose columns
are the characters of the convex modules for P . (We always have some fixed ordering on Π.) We refer the
reader to Examples 4.1-4.5 for some sample computations.

In the next section we’ll show that rank matrix is invertible, and that rank characters are invariants for
persistence modules rich enough to distinguish between direct sums of convex modules. We begin with
some preliminary observations about convex subsets.

Lemma 2.3. Let S, S′ be poset convex, with S′ given by the collection of maximal intervals TS′ =
{[ai, bi]}ni=1. Let US ⊆ TS′ be the collection of maximal intervals which are contained in S. Then

⋃
t∈US

t is

poset convex.

Proof. Let x, y ∈ ⋃
t∈US

t, with x ≤ y. Then x ∈ [ax, bx] and y ∈ [ay, by], where [ax, bx], [ay, by] ∈ US . Thus,

ax ≤ x ≤ y ≤ by,
so [ax, by] ⊆ S, as ax, by ∈ S. But [ax, by] ⊆ S′, so [ax, by] ∈ US . Therefore, [x, y] ⊆ ⋃

t∈US

t as required. �

We’ll now define two subsets of TS′ . Let S′ be poset convex. Let G(S′) := P(TS′)\{∅} and F(S′) :=
{S ∈ G(S′) | S is poset convex}, where P(T ) denotes the power set of a set T . Both sets are posets with
ordering given by containment, and clearly F(S′) is a subposet of G(S′). Intuitively, F(S′) corresponds
to the lattice of thin submodules of S′ which are the direct sums of convex modules having support given
only by elements of TS′ . When S′ is understood, we will sometimes write F and G, respectively.

Definition 2.4. Let R1, R2 ∈ F = F(S′). Denote

IR2
R1

:= {S ∈ Π | {t ∈ TR2 | t ⊆ S} = TR1}.

Thus, IR2
R1

will correspond to the set of convex modules whose fiber is the same, when S′ is replaced by

R2. Because of this, we call the set IR2
R1

the R1 fiber of R2. Clearly if IR2
R1
6= ∅, then R2 ⊇ R1. Note that

this notation makes sense for R1, R2 ∈ G. In this situation, we have the following lemma.

Lemma 2.5. Let R1, R2 ∈ G, S′ ∈ F , and R1 ≤ R2 ≤ S′. Then IR2
R1

=
⊔
x∈P(X) I

S′
R1tx, where X is a

set defined by the property TR2 t X = TS′ and all the unions are disjoint. Moreover, IS
′

R1tx 6= ∅ implies
R1 t x ∈ F .

Note that since R2 < S′, X is uniquely defined.
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Proof. Let S ∈ IR2
R1

, so {t ∈ TR2 | t ⊆ S} = TR1 . Thus, S ⊇ [a, b] for every maximal interval [a, b] ∈ TR1 .

Now consider A = {t ∈ TS′ | t ⊆ S}. By inspection, A ⊇ TR1 , hence A = R1 t x for some x and A = TS .
Thus, by Lemma 2.3, the union of intervals in A is poset convex, so A is in F . The result holds because
the nonempty sets {IS′R1∪x}x∈P(X) form a partition of IR2

R1
. �

The next lemma will give us some identities involving fibers which we’ll use in the next section.

Lemma 2.6. Fix S′. We have the following:

(a) If S1 < S2 < S′ with S1, S2 ∈ F and S2 is maximal in F\{S′}, and if there is no N ∈ F such that
S1 < N < S2, then

IS2
S1

= IS
′

S1
t IS′S′ t

⊔
IS
′

Sj
,

where S1 < Sj < S′ are all in F and Sj 6= S2.

(b) If S1 < S′ and S1 ∈ F , then IS1
S1

=
⊔

S∈F ,S1≤S
IS
′

S .

Proof. The first statement follows from Lemma 2.5 by identifying S1 = R1, S2 = R2, and considering only
points in F . The second statement is just a special case of the first, where R1 = R2 = S1. �

These properties of fibers will be used in the proof of our main results in the next section.

3. Main Results

Throughout this section, fix two modules L1 andM1, where L1 =
⊕

L∈S
⊕mL

iL=1 L andN1 =
⊕

N∈T
⊕nN

iN=1N ,
where S, T ⊆ Π.

Lemma 3.1. Let L1 =
⊕

L∈S
⊕mL

iL=1 L and N1 =
⊕

N∈T
⊕nN

iN=1N be as above. If χ(L1) = χ(N1), then
L1 and N1 agree on all elements of F .

That is, if two direct sums of convex modules agree on AR for all R convex, then they agree on AR for
R ∈ F as well.

Proof. Let M ′ ∈ F and suppose M ′ = M2 ⊕M3 for M2 and M3 convex. Then, since the module M ′ is
thin, M2 and M3 must partition both the upper and lower endpoints of each maximal interval in TM ′ . So
for each M convex, the matrix for M(AM ′) must be block diagonal:

M(AM ′) =

(
M(AM2) 0

0 M(AM3)

)
Thus, Rank(M(AM ′)) = Rank(M(AM2)) + Rank(M(AM3)), and the result follows. �

The following proposition will establish equivalent conditions for the rank matrix being nonsingular. See
the next section for examples illustrating how to compute the rank matrix for an explicit poset, specifically,
Examples 4.1 and 4.5.

Proposition 3.2. Let P be a poset, and let R be the rank matrix for P . Then R is singular if and only if
there exist two disjoint nonempty subsets of Π, labeled A and B, and two direct sums of convex modules,
MA and MB, supported on A and B, respectively, with χ(MA) = χ(MB).
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Proof. Let Π be as above, and consider the vector (mM ) ∈ Z|Π|≥0. Then,

(1)

R · (mM ) = (Rank(M(AM ′))) · (mM )

=

(∑
M∈Π

mM · Rank(M(AM ′))

)

=

∑
M∈Π

Rank

 mM⊕
iM=1

M

 (AM ′)



=

Rank

⊕
M

mM⊕
iM=1

M

 (AM ′)



= χ

⊕
M∈Π

mM⊕
iM=1

M

 .

Thus, left multiplication by R sends the barcode of a direct sum of convex modules to its character.
Therefore,

R is singular ⇐⇒ there exists a rational linear dependence among the columns of R

⇐⇒ there exists a positive rational linear dependence among the columns of R

⇐⇒ there exists a positive integral linear dependence among the columns of R

⇐⇒
(∑
M∈A

mM · Rank(M(AM ′))

)
=

(∑
N∈B

mN · Rank(N(AM ′))

)
,

where A and B are two disjoint subsets of Π, and mM and mN are positive integers. Therefore, the result
is proved by (1). �

The following corollary follows immediately from Equation (1) once R is nonsingular.

Corollary 3.3. If the rank matrix R is nonsingular and M is a direct sum of convex modules, then
R−1 · χ(M) returns the barcode of M .

We are now ready to prove the main result establishing that rank characters separate points for direct
sums of convex modules.

Theorem 3.4. Suppose L and N are two direct sums of convex modules with χ(L) = χ(N). Then L ∼= N .

Proof. If the theorem is false, then by Proposition 3.2 there exist L1 =
⊕

L∈S
⊕mL

iL=1 L and N1 =⊕
N∈T

⊕nN
iN=1N , where S, T ⊆ Π, with S ∩ T = ∅ and χ(L1) = χ(N1). For M1 and M2 ∈ F , let

KM2
M1

and JM2
M1

be the collections of summands of L1 and N1, respectively, whose isomorphism classes lie

in IM2
M1

(recall Definition 2.4).

We’ll show that if this is the case, then for any M ′ ∈ F(P ) and for any M ∈ F(M ′), we have |KM ′
M | =

|JM ′M |. We proceed by induction on the cardinality of TM ′ . If |TM ′ | = 1 then M ′ = [a, b] for some a and b,
so

Rank(M(AM ′)) =

{
1 if [a, b] ⊆M
0 otherwise

Thus,

(∑
L∈S

mL · Rank(L(AM ′))

)
is |KM ′

M ′ |. Since F(M ′) = {M ′} and

( ∑
N∈T

nN · Rank(N(AM ′))

)
=

|JM ′M ′ |, the base case holds.
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Now let |TM ′ | > 1 and suppose the result holds for all elements of F(P ) with a smaller collection of
maximal intervals. That is, suppose the result holds for all M ′′ ∈ F(P ) with |TM ′′ | < |TM ′ |. Under these
hypotheses, we obtain the following fact.

Fact. For every M ∈ F(M ′), we have |KM ′
M | − |JM

′
M | ∈ Z(|KM ′

M ′ | − |JM
′

M ′ |). In particular, if M ≤ M and
M is maximal in F(M ′)\{M ′}, then

(2) |KM ′
M | − |JM

′
M | = −(|KM ′

M ′ | − |JM
′

M ′ |)

Proof of Fact. First, suppose M is maximal in F(M ′)\{M ′}. Then, by the induction hypothesis, |KM
M | =

|JMM |. But by Lemma 2.6, K
M
M = KM ′

M tKM ′
M ′ and J

M
M = JM

′
M t JM ′M ′ , proving (2). By reverse induction

and repeated use of Lemma 2.6, the general statement follows.2 �

With this Fact proved, we can continue with the proof of the theorem. Now suppose that there is some
M1 ∈ F(M ′) with the property that every chain of inclusions from M1 to M ′ in F(M ′) has length exactly
two. That is, every chain of proper inclusions M1 < M < M ′ in F(M ′) cannot be lengthened, and M1 is
not maximal in F(M ′)\{M ′}. When this is the case, we say informally that M1 is two from the top.

Let M1 be two from the top in F(M ′). Now, |KM1
M1
| = |JM1

M1
| by the induction hypothesis. Rewriting

this by using Lemma 2.6, we have

|KM ′
M1
|+

∑
M1<M<M ′

|KM ′
M |+ |KM ′

M ′ | = |JM
′

M1
|+

∑
M1<M<M ′

|JM ′M |+ |JM
′

M ′ |.

Hence,

0 = |KM ′
M1
| − |JM ′M1

|+
∑

M1<M<M ′

(|KM ′
M | − |JM

′
M |) + |KM ′

M ′ | − |JM
′

M ′ | = |KM ′
M1
| − |JM ′M1

|+ (1− k)(|KM ′
M ′ | − |JM

′
M ′ |)

where k is some integer by Equation (2) in the Fact. Also, when M1 is maximal in F(M2)\{M2}, we have

|KM ′
M1
| − |JM ′M1

|+
∑

M1<M<M ′

(KM ′
M − |JM ′M |) + |KM ′

M ′ | − |JM
′

M ′ | = 0

⇒ |KM ′
M1
| − |JM ′M1

|+ (1− l)(|KM ′
M ′ | − |JM

′
M ′ |) = 0

for some integer l, which is necessarily less than k since M2 is not in this summation. Thus, |KM ′
M ′ |−|JM

′
M ′ | =

0. Then, by the Fact, we also have |KM ′
M | − |JM

′
M | = 0 for all M ∈ F . Therefore, if the lattice for F(M ′)

has height at least two, our proof by induction is complete since a finite poset of height at least two with a
unique maximum element must have an element that is two from the top. On the other hand, if |SM ′ | > 1
and the lattice for F(M ′) doesn’t have height at least two, then M ′ is a direct sum of pairwise disjoint
intervals. In this case the inductive proof is done as well by Lemma 3.1.

Therefore, we have shown that if χ(L1) = χ(N1), then |KM ′
M | = |JM

′
M | for all M ′ ∈ F(P ) with M ≤M ′.

Thus, since S ∩T = ∅, without loss of generality, we may pick N ′ ∈ T with N ′ 6⊆ L′ for any L′ ∈ S. Then,
|JN ′N ′ | > 0 but |KN ′

N ′ | = 0, a contradiction. Thus, Theorem 3.4 is proved. �

As a consequence of this technical result, we have the following useful proposition, which will next allow
us to connect rank characters with barcodes.

Proposition 3.5. Let P be a finite, connected poset and let Π be the set of convex subsets of P . Then the
rank matrix R = (Rank(MS(AS′)))(S,S′)∈Π2 is invertible.

Proof. Let P be finite and connected. By Theorem 3.4 and Proposition 3.2, the rank matrix R for P is
invertible since its columns are linearly independent. �

We are now ready to prove the two main theorems stated in the introduction.

Theorem 3.6. Let P be a finite, connected poset and let Π be the set of convex subsets of P .

(a) If M and N are direct sums of convex modules, then χ(M) = χ(N) ⇐⇒ M ∼= N .

2We remark that we never used the assumption that S and T are disjoint in the proof of this statement. Thus, in a sense,
we first prove that modules with the same character satisfy the conclusion of the statement.
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(b) If M is a direct sum of convex modules, then R−1 · χ(M) returns the barcode of M

Proof. It’s clear that for any persistence modules M and N , if M ∼= N , then χ(M) = χ(N). Then, by the
computation in Equation (1) and by Corollary 3.3, the result immediately follows.

�

With motivation from this theorem, we make the following definition.

Definition 3.7. Let M be a persistence module for P . The vector R−1 · χ(M) = (qS)S∈Π, with each
qS ∈ Q, is the virtual barcode of M .

By Proposition 3.5, the virtual barcode of a persistence module M is an invariant which agrees with the
Krull-Schmidt decomposition of M in the event that it is a direct sum of convex modules. When this is the
case, the barcode is recovered simply by matrix multiplication. The virtual barcode can also sometimes be
used to detect when a module has non-convex summands, since negative or properly rational entries show
that a module is not purely convex . These results are formulated in the next theorem.

Theorem 3.8. (Virtual barcode characterization) Let P be a finite, connected poset and let M and N be
persistence modules for P .

(a) If M ∼= N , then the virtual barcodes of M and N are equal.
(b) If M is a direct sum of convex modules, then R−1 · χ(M) is a vector over Z≥0, and R−1 · χ(M) =

(qS)S∈Π is the barcode of M .

(c) If R−1 · χ(M) is not a vector over Z≥0, then M is not a direct sum of convex modules.

Proof. Part (a) is a restatement of Theorem 3.6(a). Parts (b) and (c) also easily follow from Theorem 3.6
by contraposition. Note that part (c) is a strengthening of Corollary 1.2. �

Thus, any persistence module M has a rank character χ(M), which is a nonnegative integer vector
indexed by Π. This rank character is an invariant for M , which can be used to associate to M its virtual
barcode R−1 · χ(M). If M is a direct sum of convex modules, its virtual barcode is precisely its barcode,
and if its virtual barcode has an entry not in Z≥0, M must have non-convex summands. We remind the
reader that the hypothesis that M and N are convex in Theorem 3.6 is necessary (see Example 4.3). If
a module’s virtual barcode is in Z≥0 this only says that there is a direct sum of convex modules with the
same rank character (see Example 4.4). For a general persistence module, by separating the positive and
negative entries of the virtual barcode, we get the association

M ∼
m⊕
i=1

qiSi −
n⊕
j=1

rjTj

where the multiplicities qi and rj are possibly rational3.

4. Examples

In this section, we provide some examples of explicit computations with rank characters.

Example 4.1. We return to the diamond (see Example 1.1 and Figure 1). Below is a table for Π = Π(P )
with a chosen ordering:

# 1 2 3 4 5 6
S {1} {2} {3} {4} {1,2} {1,3}
AS [1]=[1,1] [2] [3] [4] [1,2] [1,3]

Pictorial
depiction

4

2

@@

3

^^

1

^^ @@

4

2

@@

3

^^

1

^^ @@

4

2

@@

3

^^

1

^^ @@

4

2

@@

3

^^

1

^^ @@

4

2

@@

3

^^

1

^^ @@

4

2

@@

3

^^

1

^^ @@

3For every poset P that we’ve computed, every persistence module has an integral virtual barcode. At this point, we do
not know if this is true in general.
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# 7 8 9 10 11
S {2,4} {3,4} {1,2,3} {2,3,4} {1,2,3,4}
AS [2,4] [3,4] [1,2]+[1,3] [2,4]+[3,4] [1,4]

Pictorial
depiction

4

2

@@

3

^^

1

^^ @@

4

2

@@

3

^^

1

^^ @@

4

2

@@

3

^^

1

^^ @@

4

2

@@

3

^^

1

^^ @@

4

2

@@

3

^^

1

^^ @@

Then, the rank matrix R = (Rank(MS(AS′)))S,S′∈Π is 4



1 2 3 4 12 13 24 34 123 234 1234
1 1 0 0 0 1 1 0 0 1 0 1
2 0 1 0 0 1 0 1 0 1 1 1
3 0 0 1 0 0 1 0 1 1 1 1
4 0 0 0 1 0 0 1 1 0 1 1

12 0 0 0 0 1 0 0 0 1 0 1
13 0 0 0 0 0 1 0 0 1 0 1
24 0 0 0 0 0 0 1 0 0 1 1
34 0 0 0 0 0 0 0 1 0 1 1

123 0 0 0 0 1 1 0 0 1 0 1
234 0 0 0 0 0 0 1 1 0 1 1

1234 0 0 0 0 0 0 0 0 0 0 1


The characters χ(M) and χ(N) are given below, along with their virtual barcodes. By Theorem 3.6,

these are their barcodes as well.

χ(M) = ( 2 1 1 0 1 1 0 0 1 0 0 )T ⇒ R−1 · χ(M) = ( 1 0 0 0 0 0 0 0 1 0 0 )T

χ(N) = ( 2 1 1 0 1 1 0 0 2 0 0 )T ⇒ R−1 · χ(N) = ( 0 0 0 0 1 1 0 0 0 0 0 )T

Thus, the decompositions of M and N are determined to be

M ∼= M{1} ⊕M{1,2,3} and N ∼= M{1,2} ⊕M{1,3}.
Recall that the rank of internal linear transformations alone isn’t sufficient to distinguish between M

and N . �

Example 4.2. When P is totally ordered, convex subsets correspond exactly to intervals in P . In this
situation, P is given by the equioriented An quiver.

An : 1→ 2→ · · · → n− 1→ n

In this situation the (b, a) entry of MS(AS′) is given by the identity:

M[x,y](A[z,w])b,a =

{
1 if x ≤ a = z ≤ b = w ≤ y
0 otherwise.

Hence,

Rank(M[x,y](A[z,w])) =

{
1 if x ≤ z ≤ w ≤ y
0 otherwise.

Therefore, when P is totally ordered, in the standard ordering the rank matrix will be upper triangular
with ones on the main diagonal (and hence is clearly invertible). �

4Blocks are added to the rank matrix only for readability. For details regarding the computation of the entries, see Example
4.5.
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11 1 λ IdId Id Rλ

1

3

2

4

P

k

k

k

k

Mλ

k2

k2

k2

k2

M ′
λ

Figure 4. P with two representations that depend on λ.

Example 4.3. In this example we show that while two persistence modules may have the same character
(and hence the same virtual barcode) at most one can be a direct sum of convex modules. Consider the
poset P in Figure 4 and persistence modules Mλ and M ′λ, where λ ∈ k and Rλ =

(
1 λ
0 1

)
.

Then Mλ is an indecomposable thin module for any λ, but is a direct sum of convex modules only when
λ is 1 (when it is convex). On the other hand, χ(Mλ) = χ(M1) for all λ 6= 0. Thus, the rank character
(and rank in general) cannot distinguish between M1 and Mλ for λ 6= 0. Similarly, M ′λ is indecomposable
whenever λ 6= 0, yet M ′λ is not a direct sum of convex modules except in the case λ = 0, in which case
M ′0
∼= M1 ⊕M1. �

Example 4.4. In this example we show how rank characters can sometimes be used to conclude that a
persistence module is not a direct sum of convex modules (see Corollary 1.2 and Theorem 3.8). Consider
the poset P and module M given in Figure 5.

One can check that the rank matrix R = (Rank(MS(AS′))(S,S′) is as below.



1 2 3 4 14 24 34 124 134 234 1234
1 1 0 0 0 1 0 0 1 1 0 1
2 0 1 0 0 0 1 0 1 0 1 1
3 0 0 1 0 0 0 1 0 1 1 1
4 0 0 0 1 1 1 1 1 1 1 1

14 0 0 0 0 1 0 0 1 1 0 1
24 0 0 0 0 0 1 0 1 0 1 1
34 0 0 0 0 0 0 1 0 1 1 1

124 0 0 0 0 1 1 0 1 1 1 1
134 0 0 0 0 1 0 1 1 1 1 1
234 0 0 0 0 0 1 1 1 1 1 1

1234 0 0 0 0 1 1 1 1 1 1 1


By direct computation, χ(M) = ( 1 1 1 2 1 1 1 2 2 2 2 )T and R−1 · χ(M) = ( 0 0 0 0 0 0 0 1 1 1 −1 )T . Thus,

since the virtual barcode has a negative coordinate, by Theorem 3.8, M cannot be a direct sum of convex
modules. Alternatively, the virtual barcode suggests the association

M ∼M{1,2,4} ⊕M{1,3,4} ⊕M{2,3,4} 	M{1,2,3,4},
where

χ(M) = χ(M{1,2,4} ⊕M{1,3,4} ⊕M{2,3,4})− χ(M{1,2,3,4}).

From this viewpoint, as a convex module appears with negative multiplicity, M is not a direct sum of
convex modules. The persistence modules in Example 4.3 also illustrate this phenomenon. For example,
the module M0 (see Figure 4) has the property that R−1 ·χ(M0) = ( 0 0 0 0 −1 0 0 0 1 0 1 0 0 )T , so M0 is not a
direct sum of convex modules (though it is indecomposable and thin) as M0 ∼M{1,2,3}⊕M{1,3,4}	M{1,3}.

Note that N is a direct sum of two convex modules, and its decomposition is recovered, since

χ(N) = ( 1 1 1 2 1 1 1 1 2 2 2 )T and R−1 · χ(N) = ( 0 0 0 0 0 0 1 1 0 0 0 )T

Thus, N ∼= M{3,4} ⊕M{1,2,4} �
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( 10 )

( 01 )

( 11 ) ( 10 )

( 10 )

( 11 )

1 32

4

P

k kk

k2

M

k kk

k2

N

Figure 5. P with two representations.

Example 4.5. In this example we compute some entries of the rank matrix in Example 4.1, and then
some entries of the characters in Example 4.4.

First, for the rank matrix in Example 4.1, consider S = {1, 2, 3} and S′ = {1, 2, 3, 4} for the diamond
(see Figure 1). Then we have

MS(AS) =


1 2 3 4

1 0 0 0 0
2 1 0 0 0
3 1 0 0 0
4 0 0 0 0

 MS(AS′) =


1 2 3 4

1 0 0 0 0
2 0 0 0 0
3 0 0 0 0
4 0 0 0 0


Hence, Rank(MS(AS)) = 1 and Rank(MS(AS′)) = 0, so the (9, 9) entry in the matrix is 1 and (11, 9)

entry is 0.

Now for the characters χ(M) and χ(N) from Example 4.4. Since both modules have a two-dimensional
vector space at vertex 4, the matrices will be 5× 5. We then compute

M(A{1,2,4}) =


1 2 3 4 4′

1 0 0 0 0 0
2 0 0 0 0 0
3 0 0 0 0 0
4 1 0 0 0 0
4′ 0 1 0 0 0

 N(A{1,2,4}) =


1 2 3 4 4′

1 0 0 0 0 0
2 0 0 0 0 0
3 0 0 0 0 0
4 1 1 0 0 0
4′ 0 0 0 0 0


Hence, Rank(M(A{1,2,4})) = 2 while Rank(N(A{1,2,4})) = 1, which are precisely the ninth entries in the

characters. �

Example 4.6. In this example we point out a combinatorial consequence of the rank matrix being invert-
ible. This result is independent of our analysis of rank characters and virtual barcodes.

Let Π′ be the set of all convex subsets of P which don’t correspond to simples or arrows in the Hasse
quiver. That is, Π′ = {S ∈ Π | |S| > 2}. For S, S′ ∈ Π′, let dS,S′ be the number of arrows contained in S
which are maximal intervals in S′. Then, the square matrix (DS,S′)(S,S′)∈Π′2 is invertible, where

DS,S′ = Rank(MS(AS′))− dS,S′ .
To see this, choose an ordering on Π so that all simples are first and all arrows are next. We first perform
column operations corresponding to simples to clear out their rows in the rank matrix. Then we perform
row operations corresponding to arrows to clear out their columns, obtaining a block diagonal matrix. The
result follows, since the block corresponding to Π′ ×Π′ must be invertible. �

5. Future Directions

The results of this paper raise several interesting questions which we wish to consider in future work.
First, when does the rank matrix have determinant ±1?5 This is relevant, since any such poset will have
the property that every persistence module has a virtual barcode in Z. As we have seen, when this is the

5My thesis student at Reed College, Oliver Mansbach, has shown that this need not always happen even for subposets of
Z× Z.
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case, every persistence module has the same rank character as a difference of two direct sums of convex
modules.

Second, we have seen that if the virtual barcode of a persistence module N is in Z≥0, there is a unique
direct sum of convex modules M with χ(N) = χ(M). With motivation from representation theory, the
authors wonder whether the inverse image of a rank character can be finite without being a singleton.
That is, if k is an infinite field, and |{M | χ(M) = χ(N)}| > 1, must the set necessarily be infinite? (We
can show this to be false for a finite field k.) In more generality, what can one say about the inverse image
of the function M → χ(M)? For example, each level set consists of persistence modules with the same
dimension vector. What other common properties must modules with the same character share?

Lastly, the authors wonder if orthogonality relations analogous to those for group characters exist.
That is, is there an inner product of the set of characters of convex modules that has a nice physical
interpretation?
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